

Refer to Standard Drawings 203.20 and 203.21 for more clarity on the above graphic.

Definitions							
T.S. = Common point of tangent to spiral	S.C. = Common point of spiral to circular curve	C.S. = Common point of circular curve to spiral D_C = Degree of circular curve					
S.T. = Common point of spiral to tangent	R_c = Radius of circular curve (are definition)						
D = Degree of curvature at any point on the spiral	T_S = Tangent for entire curve (P.I. to T.S. or S.T.)	Δ = Total central angle of curve					
$\Delta_{\mathcal{C}} = \text{Central angle of circular curve}$	Θ_S = Intersection angle between the tangent of the complete curve and the tangent at the S.C., the spiral angle.	Θ = Intersection angle between the tangent of the complete curve and the tangent at any point on the spiral, the spiral angle of any other point.					
p = Offset distance from the tangent of P.C. of circular curve produced	k = Distance from T.S. to point on tangent opposite the P.C. of circular curve produced.	Φ_d = Deflection angle from tangent at T.S. to S.C.					
Φ = Deflection angle from tangent at T.S. or any point on spiral to any other point on spiral	L.C. = Straight line chord distance T.C. to S.C.	L_S = Length of spiral transition					
L_c = Length of circular curve	L = Length between T.S. and any other point on spiral	X_C, Y_C = Coordinates of S.C. from the T.S.					

Formulas					
$R_C = 5728.58 / D_C$	$L.C. = X_C /(\cos \Phi_S) = Y_C /(\sin \Phi_S)$				
$D = LD_i/L_i$	$\Delta_C = \Delta - (L_s D_C / 100)$				
$*X_C = L_S - (L_S^3/40R_C^2)$	$L_{\rm C} = 100\Delta_{\rm C}/D_{\rm C}$				
$*Y_C = X_C \tan \Phi_S$	$\Theta s = L_3 D_C / 200$				
$p = Y_C - R_C \text{ Vers } \Theta_S$	$\Theta = (L/L_{\mathcal{S}})^2 \times \Theta_{\mathcal{S}}$				
$k = X_C - R_C \sin\Theta s$	** $\Phi = (\Theta_S/3) - C$				
$T_S = (R_C + p)[\tan(\Delta/2)] + k$	** Φ = (Θ /3) - C				
$E_s = (R_C + p)[\operatorname{Exsec}(\Delta/2)] + p$	** $\Phi = [(\Theta/3)(L/L_s)^2] - C$				

^{*} These formulas are closely approximate - the exact value is determined from a geometric series not given here.

** The correction C is obtained from the table below. C is less than one-half minutes for values of 9 of 20° or less, and can in pratically all cases, be disregarded.

Θ in degrees	15	20	25	30	35	40	45	50
C in minutes	0.2	0.4	0.8	1.4	2.2	3.4	4.8	6.6